Quasi-compact endomorphisms and primary ideals in commutative unital Banach algebras
نویسندگان
چکیده
منابع مشابه
Principal Ideals and Semi-direct Products in Commutative Banach Algebras
We prove necessary conditions for a commutative Banach algebra to be the semidirect product of some subalgebra together with a speci ed principal ideal. x
متن کاملCompact endomorphisms of Banach algebras of infinitely differentiable functions
Let (Mn) be a sequence of positive numbers satisfying M0 = 1 and Mn+m MnMm ≥ ( n+m n ) , m, n, non-negative integers. We let D([0, 1],M) = {f ∈ C∞([0, 1]) : ‖f‖ = ∞ ∑
متن کاملRiesz endomorphisms of Banach algebras
Let B be a unital commutative semi-simple Banach algebra. We study endomorphisms of B which are simultaneously Riesz operators. Clearly compact and power compact endomorphisms are Riesz. Several general theorems about Riesz endomorphisms are proved, and these results are then applied to the question of when Riesz endomorphisms of certain algebras are necessarily power compact.
متن کاملDerivations of Commutative Banach Algebras
In [2] Singer and Wermer showed that a bounded derivation in a commutative Banach algebra 21 necessarily maps 21 into the radical 91. They conjectured at this time that the assumption of boundedness could be dropped. It is a corollary of results proved below that if 21 is in addition regular and semi-simple, this is indeed the case. What is actually proved here is that under the above hypothese...
متن کاملQuasi-Commutative Algebras
We characterise algebras commutative with respect to a Yang-Baxter operator (quasi-commutative algebras) in terms of certain cosimplicial complexes. In some cases this characterisation allows the classification of all possible quasi-commutative structures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2016
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2016.02.015